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Composite Circular Plates With
Residual Tensile Stress
Undergoing Large Deflections

Many micromachined electroacoustic devices use thin plates in conjunction with
electrical components to measure acoustic signals. Composite layers are needed for
electrical passivation, moisture barriers, etc. The layers often contain residual stresses
introduced during the fabrication process. Accurate models of the composite plate
mechanics are crucial for predicting and optimizing device performance. In this paper,
the von Kdarman plate theory is implemented for a transversely isotropic, axisymmetric
plate with in-plane tensile stress and uniform transverse pressure loading. A numerical
solution of the coupled force-displacement nonlinear differential equations is found using
an iterative technique. The results are verified using finite element analysis. This paper
contains a study of the effects of tensile residual stresses on the displacement field and
examines the transition between linear and nonlinear behavior. The results demonstrate
that stress stiffening in the composite plate delays the onset of nonlinear deflections and
decreases the mechanical sensitivity. In addition, under high stress the plate behavior
transitions to that of a membrane and becomes insensitive to the composite nature of
the plate. The results suggest a tradeoff between mechanical sensitivity and linearity.
[DOI: 10.1115/1.4005534]

1 Introduction

Many microelectromechanical systems (MEMS) based electroa-
coustic devices, such as microphones, utilize composite plates [1-3].
The plate’s mechanical response to acoustic pressure oscillations is
important in determining the sensitivity, bandwidth, and dynamic
range of the electroacoustic device. The mechanical sensitivity of
the device is dependent upon the plate compliance. The bandwidth
is the frequency range over which the sensitivity is approximately
constant. The resonance of the diaphragm determines the upper limit
of the bandwidth. The dynamic range is the difference between the
minimum detectable pressure and the maximum pressure where the
sensitivity is independent of applied pressure.

In a piezoresistive MEMS microphone; for example, a silicon
dioxide layer thermally grown on a silicon substrate provides elec-
trical passivation and a silicon nitride layer deposited on top of
the oxide serves as a hydrophobic barrier. The thermally grown
oxide contains compressive stress and the deposited nitride layer
can be tailored to be in tension or compression. A compressive
stress increases the plate’s sensitivity to pressure and lowers the
pressure at which the onset of nonlinear deflection occurs [3]. A
sufficiently large compressive stress buckles the device. In con-
trast, a tensile stress lowers the sensitivity of the device while
increasing the upper limit of the dynamic range [4]. Due to the
significant impact of residual stresses on device performance, they
must be incorporated into the model used in the design process.

Optimization has been shown to be an important tool in electro-
acoustic device design [5]. The performance tradeoff between the
device sensitivity and noise floor suggests that the minimum de-
tectable pressure is an appropriate objective function in micro-
phone design optimization [5]. Performance, fabrication, and
model accuracy constraints are required in the optimization. Two
performance constraints are the bandwidth and the upper limit of
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the dynamic range. Linear plate theory is used to determine the
mechanical sensitivity and bandwidth, but a nonlinear plate model
is needed to predict the upper limit of the dynamic range.

The large deflection theory for isotropic, clamped plates with
zero in-plane load is discussed in Timoshenko and Woinowsky-
Krieger [6]. Sheplak and Dugundji [4] extended this work to non-
linear deflections of isotropic plates with tensile in-plane loading.
The current effort builds upon the previous work by incorporating
composite layers in the diaphragms. The structure analyzed is rep-
resentative of a MEMS microphone. The plate is composed of a
silicon-silicon dioxide-silicon nitride composite with material pa-
rameters shown in Table 1. This analysis, however, can be tailored
for any number of composite layers, residual stresses, and material
properties.

The derivation presented considers an axisymmetric plate and
assumes transversely isotropic layers. The approximation of sili-
con as mechanically isotropic is common for MEMS structures
due to its low degree of anisotropy [7,8]. The straindisplacement
relationship implemented includes the von Kdrmén strains to
accurately predict large deflections. Residual stresses are assumed
to be uniform in each plate layer. The derivation results in two
nonlinear, coupled, ordinary differential equations governing
transverse deflection and the radial force resultant. The equations
are nondimensionalized and solved using an iterative finite differ-
ence method. Results are reported for different combinations of
nondimensional parameters that capture the composite lay-up and

Table 1 Material and geometric parameters
Parameter Si SiO, SiyNy,
Layer thickness® (1um) 10 0.3 0.3
Young’s modulus (GPa) 170 73 384
Poisson’s ratio 0.27 0.17 0.24

“The diaphragm radius is @ =1.47mm with a total diaphragm thickness
h=10.6 um.
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plate geometry. The impact of in-plane tension on mechanical
sensitivity and the onset of nonlinearity are discussed.

2 Basic Equations

Consider the cross section of an axisymmetric, composite plate
shown in Fig. 1. A constant tensile in-plane stress, dy, is assumed
to exist in one or more of the layers. A uniform transverse load,
P, is applied on the surface. Although only three layers are shown,
the solution methodology is applicable to an arbitrary number
of layers. The equilibrium equations of the axisymmetric plate
are [9]:

dN, N, — Ny
+ =

" . 0 ()]
% (i‘%N,) +1p +%(”Qr) =0 @
and

where N, and Ny are the radial and tangential in-plane force resul-
tants, M, and M, are the radial and tangential bending moment
resultants, Q, is the shear force resultant, and w is the deflection in
the positive z direction.

Assuming an axisymmetric plate, the radial and tangential
Green strain tensor simplified for small strains but moderate rota-
tions in terms of displacement fields, u, and u., are [6]

Ou, N l(@uz) 2
87' 2 E)r (4)
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The Kirchhoff hypothesis yields the displacement field for a thin
circular plate under uniform transverse loading is [9]

u:(r,z) = w(r) )

and

(6)
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Fig. 1 Cross section of an axisymmetric, composite plate with
in-plane stress in the second layer
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where uo(r) is the radial and w (r) is the vertical displacement of
points on the reference surface (z=0) shown in Fig. 1. Substitut-
ing the displacement fields into Eq. (4), the strain relationships

become [10]
e | .s? K,
{op={ap{x) "

where the reference plane strains are

@+1(d_w)2
{8 }_ dr 2\ dr (8)

& Uuop

O T O

r

and the curvatures are

1a)=

The plate is assumed to be transversely isotropic. The constitutive
relationship for an axisymmetric plate including the residual

stress is
o N &l Ky
{5 )= {5} o5} -0}

where a(; is the residual stress in the nth layer and [Q,,] is the stiff-
ness matrix of the nth layer,

E, [1 w,
el=25 ] ]

Here, E, and v, are the modulus of elasticity and Poisson’s ratio
in the plane of the plate, respectively. The force and moment
resultants are found by taking the zeroth and first moments of the
stresses through the thickness of the plate, respectively, and are

()L eh S mfz) o

and

(d =[G e () oo o)

13)

d*w
Cdr?
9
1dw ©

rdr

10)

an

where z7 and zp are coordinates identifying the top and bottom of
the plate. The [A], [B], and [D] matrixes are the extensional,
flexural-extensional coupling, and flexural stiffness matrixes,
respectively, and are defined as [10],

[A] - 1
18] :j o) = Ya (14)
) 2

Equations (1)—(13) are combined to form a differential equation in
terms of deflection slope and radial force resultant. First, Eq. (2) is
integrated,

d
_WNr+%p+Qr:0

dr (15

and combined with Eq. (3) to yield
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dM M M() dw
+—+ N+p 0

dr r dr 2 (16)

Substituting Eq. (13) into Eq. (16) results in

&Pw d (ldw) ~ Nodw

1 dw
a Ta\rar) par {

=_—"_ |BY,-—— +N,
D* dr 122”1;+

where 1\7,- = N,- — N(), BTZ = B]](A]z/A]]) - B|2, and Dx* = D||
—(B%,/A11). By introducing the transverse deflection slope (or ap-
proximate rotation angle of the transverse normals), ¢ = —dw/dr,
Eq. (17) becomes

_ N, B¢t | p

D" D+ 2D r

“¢,d (9) No (18)

dr*  dr

Equation (18) is a nonlinear differential equation with two
unknowns, ¢ and N,. Therefore, another equation with ¢ and N,
as dependent variables is required. The second equation is derived
from the strain compatibility equation [6],

d(red) 1
0 — (r'g())+_¢2

1
" dr 2 (19

Solving Eq. (12) for the radial and tangential strains and substitut-
ing into Eq. (19) results in an equation in terms of ¢ and N,.,

d2N dN _ gt rd2_¢+@_9 A} —AL 9
arr 7 ar 2\"ar2 " dr Ay 2
(20)

Equations (18) and (20) form two mixed force and displacement,
nonlinear differential equations in dependent variables ¢ and N,.
Finally Eq. (12) is substituted into Eq. (1). yielding

d2u0 1 du() IZ0) o B“ d2¢ + ldd) ¢
drr rdr 2 Ap \dr2  rdr 2
A\ ¢* do
- 1l—-—— === ¢— 21
( A11> 2r dr ( )

a nonlinear ordinary differential equation for the radial displace-
ments along the reference surface. Equations (18), (20), and (21)
are nondimensionalized using the following definitions

z w dW a Uo
g’ _Iow=Y e Y _4 u="
C a7 ’/I h’ h7 dé h¢7 h b
N,d? Noa> pat
- _ £ _ P =
S = K p 2hD*

where a and h are the radius and total thickness of the plate,
respectively. The nondimensionalization is similar to that of
Sheplak and Dugundji [4]. It is important to note, however, that
Sy, k*, and P* are influenced by the composite nature of the plate
through the composite stiffness, D*. The resulting nondimensional
equations are

d2® 1d® A
K240 =—pP* +s*®——®2 22
PERRYT ( 52) - 28 ¢
d’s: ds; d&*0 46 0\ X
2 _ M e V2
¢ e +3¢ Q= A( d62+d5 C) 2@ (23)
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and

d2U+1dU7U 7( (d2®+1d® @)
a2 Tgag T \m\gg Teae T2
A12)® d@])
+O((1-——)=4+— 24
K Ay ) 28 dg @
where
_ Bp,h Al — A% K? _h
A_ D*7 X = A]] D*7 5 —
and
Byl
Mna = Allh

The A coefficient increases in magnitude as the plate becomes
more asymmetric and goes to zero for a symmetric composite.
The X coefficient is dependent upon the variation in the material
properties of the composite layers. The 7, coefficient is the non-
dimensional distance from the reference axis to the neutral axis. It
is important to note that Eq. (22), Eq. (23), and Eq. (24) reduce to
the equations of Sheplak and Dugundji [4] for a homogenous plate
with z=0 at its midplane.

The stresses within the plate Eq. (10) are nondimensionalized

as
) Ewc* | 9
where E,,; is the chosen modulus of elasticity for nondimensional-

ization. The nondimensional stress can be decomposed into resid-
ual stress and stress due to transverse loading,

(25)

=" % } { x }
ne =93 yn (T sn (26)
{ 2y } { X Zp
where the stress due to loading (X") is
du N U de n S}
& e Un Iz Un—
g _om [ifaetel, JaE T
5 0-w) (), U 1 d©  ©
n e e Un—~ =
ac ¢ ac = ¢
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and IT =

r1d

2.1 Boundary Conditions. The plate is assumed to have
clamped boundary conditions such that the slope and radial dis-
placement is zero at the plate’s edge,

(28)
and

(29

The symmetry condition dictates that the deflection slope and ra-
dial displacement is zero at the plate’s center,

(30)

and
31
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(a) Deflection normalized by center deflection, Wj.
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(b) Slope normalized by center deflection, Wj.
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(c) Curvature normalized by P*.

Fig.2 Linear nondimensional solution for various k*

Two boundary conditions on S; are also needed. The symmetry
condition also dictates that the radial change in the incremental ra-
dial force resultant is zero at the plate’s center,

ds:

=0
d¢

¢=0

(32)

The second boundary condition on S is derived from the clamped
radial displacement boundary condition, Eq. (29). Combining
Eq. (29) with Egs. (1), (8), and (12), gives the second boundary

condition,
A]2 doe
1——=)8%. = —-A
<=1+< Au) rlecs d¢

ds:
d¢

(33)

é=1

The deflection is obtained by integrating the slope ® and applying
a clamped boundary condition on the edge of the plate,

(34)

2.2 Linear Theory. For small deflections, the nonlinear
terms in Eq. (22) are neglected and the resulting governing equa-
tion is uncoupled from S,

O 14O 1
— = k*2+—>®:fP* 35
dg & de < & - G
The slope, transverse deflection, and curvature solutions are
P* I (k" &)
Q) =—(¢- 36
© =z (£-505 (36)
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o P (1=8) 1K) [Io(kE)
() _k*z{ 2 @?(k*) Do(k*) - IH o7
and
P Klo(k ) 1 (k*€)
w0-m( - he)

respectively, where Iy and /, are modified Bessel functions of the
first kind and the nondimensional curvature is defined as
Y = dO®/d¢&. Neglecting the nonlinear terms in Eq. (24) and sub-
stituting in Eq. (36) yields the radial displacement

7’1nagP* Il(k*é)
V=" (h(k*) “5>

(39)

The slope, deflection, and curvature results are plotted in Fig. 2.
These results are similar in nature to the isotropic case [4] with
the effect of the composite accounted for in £* and D*. The linear
theory for a composite differs from the isotropic case by having a
finite radial displacement. It is easily seen from Eq. (39) that in
the limit of a homogenous plate evaluated at the midplane, i.e.,
Nza — 0, the radial strain is identically zero. As the tension param-
eter, k*, becomes large, the transverse deflection’s inflection point
(where curvature equals zero) gets closer to the edge of the plate
and the deflection slope gradients become severe. This is indica-
tive of an edge zone that develops between the point of maximum
deflection slope and the clamped boundary condition at the plate’s
edge. As the tension parameter increases, this zone becomes
smaller and the gradient in the deflection becomes larger. Similar
to the isotropic plate case, the extent of this edge zone is estimated
by A¢=3/k* [4]. In a numerical solution, the edge zone must be
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(a) Radial and tangential stress as a function of & at the bot-
tom of the plate.

0.2

0.2

(b) Radial stress as a function of 1 at the edge of the plate.

Fig. 3 Linear nondimensional stresses for various k* when the
plate is loaded with P* =1

finely discretized to accurately capture the gradient of the deflec-
tion slope.

Substituting the solutions for ® and U into Eq. (27) gives the
nondimensional stresses in the plate due to loading,

{ ir(é,f’]) } _ P*H(ﬂ B nna)

ig(f,r]) k*Q(l - Vn)
LUK R hE)
" (I+v) & L(k) (14 wn) LK)
R s
(I+vn) & Li(k) (14 wn) LK)
(40)

The nondimensional stresses as a function of £ and # are plotted
in Fig. 3. The nondimensional stresses exhibit discontinuities
across the layers due to discontinuous material properties.

3 Nonlinear Theory

For large deflections, the nonlinear terms in equations Eq. (22)
and Eq. (23) become important. The governing equations are
discretized and solved using finite difference equations. First, the
solution method of Sheplak and Dugundji [4] is followed by intro-
ducing a coordinate transformation to concentrate points at the

Journal of Applied Mechanics

Table2 Non-dimensional parameters

Symbol Parameter Value
A Symmetry 0.0162
X Composite 10.75
Nna N-D Distance to neutral axis —0.4344
g Aspect ratio 0.0072

plate’s edge where deflection slope gradients are large. The coor-
dinate transformation to a uniformly discretized variable, &, is

11
IH{L }
ﬁ — é

1
ml AL
p—1
where B(>1) is the stretching parameter and € is a set of evenly
spaced points. As § — 1, the transformation groups more points

near {=1. After applying the coordinate transformation, the
coupled equations become

A&\’ @ ( 1 dé d2§)d® o1
ds LI S s —|e
(dé) @ \ggac " ag) @ 5

(41

7 Al
=P +850 - -0’ 42
(O+50-35 42
o (dE\ S L dE L dPENdS:
0 (57) 53 + (e 007 )
— A é(g)(d‘f de? Xor wy)

Lo dPE dENd® 6 2
a0z d—é)d—é‘@

and

2

£y (0 a0 100 v
dZ\0E) dE\dZ  E9I) (@)

14
d2_®(d_f)2+d® (8@;0_5)_ ©
e\ q@ \ag) TaE \o2 TE@oe) @y

A ® d® d¢
of(1-212) = 2%
- <( An) 268 " az aé)

= G

(44)
The transformed boundary conditions are
O(El=0=0(=1)=0 (45)
dédS’f)
e B 46
(dé ) )
déds; A dﬁd@)
T E - )Se= 47
(dé dé);l ( Au) rlees (dg” dé )z, @7
and B ~
UE=1)=U(&=0)=0 (48)

Second-order finite difference equations are used to discretize
Eqgs. (42), (43), and (44). Third-order forward and backward
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Fig. 4 Nonlinear nondimensional solution for various pressure loadings (k* = 0). Finite element

results are marked by a circle.

difference equations are used to discretize the boundary condi-
tions. The resulting matrix equations are

F{s;}.{e@hH{e} = {/} (49)
KI{s;} = {L({®})} (50

and
R{U} ={T({6})} (51)

An implicit iterative scheme is used to solve equations, Eqgs. (49)
and (50). First, Eq. (50) is inverted and solved for {S;} given an
initial guess for {@}. Next, {S:} and the guess for {®} are
inserted into [F({S’}, {®})] and Eq. (49). is solved for a new ©.
The new {@®} is substituted into Eq. (50), and the process is
repeated until the solution converges. The initial guess used in
this study is the linear solution. The convergence tolerance was
set at 0.1% with the stretching parameter ff=1.01. After a solu-
tion is found for {@®}, Eq. (51). is solved for {U}. Input parame-
ters for the governing equations to solve for {®} and {S,*} are k*,
P*, A, and X. For this paper, A and X were kept at constant values
given in Table 2 that are indicative of a silicon-silicon oxide-sili-
con nitride composite [3]. In addition to these values, the nondi-
mensional distance to the neutral axis from the reference axis 7,
and aspect ratio ¢ of the plate are needed to solve for the radial
displacement, U. Their values are also found in Table 2.

The numerical plate model is validated using the commercial fi-
nite element package ABAQUS. An axisymmetric composite
plate model meshed with seventy-four 3-node quadratic thin (or
thick) shell elements (type SAX?2) is used. Residual stress is sup-
plied as an initial condition.

Figure 4 shows the deflection, deflection slope, curvature, and
radial displacement for increasing values of P* (for k* =0). In the
linear solution, the deflection slope and mode shapes are inde-
pendent of pressure loading. It is interesting to note that as P*
increases, the plate tends to behave similarly to a linear plate with

021007-6 / Vol. 79, MARCH 2012

(a) Radial and tangential stress as a function of & at the bot-
tom of the plate.

0.2

-0.2 . . 0.2

(b) Radial stress as a function of 1 at the edge of the plate.

Fig. 5 Nonlinear nondimensional stresses for various k* when
the plate is loaded with P* =1
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Fig. 6 Mechanical sensitivity versus uniform transverse load
for various values of in-plane tension. Finite element results are
marked by a circle.
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103 3 Region

10 ;
107 10

0 10’ 10°
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Fig. 7 Maximum transverse loading for linear deflections ver-
sus in-plane tension

a large tension parameter [4]. The radial and tangential stresses
due to loading are shown in Fig. 5, respectively. Figure 6 shows
the transition from linear to nonlinear behavior. The mechanical
sensitivity is represented by the center deflection normalized by
the transverse load, Wy/P*. In the linear region, the mechanical
sensitivity is constant and independent of the transverse load. This
value is also dependent on the composite coefficients, A and X.
As the transverse load increases, the mechanical sensitivity
decreases as the plate stiffens due to nonlinear deflections. When
the in-plane tension is increased, the onset of nonlinearity is
delayed. In this regime the deflection is independent of A and X
and the plate transitions to membrane behavior [4]. This can be
seen in Fig. 7 where two different composite structures merge to
the same solution. The cost of delaying the onset of nonlinearity is
a decrease in the linear sensitivity as shown in Fig. 6. Thus, a
tradeoff between sensitivity and linearity exists. Figure 7 shows
the maximum linear loading for various values of in-plane ten-
sion. As the tension parameter k* increases, the composite plate
transitions to membrane behavior and there is no longer depend-
ence on A and X.

4 Conclusions

A nonlinear, composite plate model with tensile residual stress
has been developed using von Kdrmdn plate theory. The formula-
tion results in two coupled nonlinear equations for the deflection
slope and radial force resultant. This paper extends the isotropic
plate model of Sheplak and Dugundji [4] to a composite geometry
resulting in composite, nondimensional parameters k* and P*.
This model is verified via the commercial finite element analysis

Journal of Applied Mechanics

package ABAQUS, and was found to compute the solution O(10%)
times faster. The model captures the tradeoff between mechanical
sensitivity and the upper limit of dynamic range. By increasing
the in-plane tension of the plate, the upper limit of the dynamic
range is increased. This occurs at a detriment to the mechanical
sensitivity of the device. This tradeoff must be considered when
designing sensors and actuators that incorporate composite plates
with tensile stress.
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Nomenclature
r{¢} = radial coordinate (nondimensional)
z{n} = transverse coordinate (nondimensional)
a = plate radius
= total plate thickness
z7, zg = top and bottom coordinates of the plate
u, = radial displacement field
u, = transverse displacement field
uy {U} = radial displacement at reference plane
w {W} = transverse displacement (nondimensional)
¢{®} = deflection slope (nondimensional)
W = nondimensional curvature, d® /d¢
¢, = radial strain
&y = tangential strain
&9 = radial strain at the reference plane
&) = tangential strain at the reference plane
K, = radial curvature term
K¢ = tangential curvature term
} = radial stress (nondimensional)
o9{Zp} = tangential stress (nondimensional)
} = residual tensile stress (nondimensional)
[Q] = stiffness matrix
p{P*} = uniform transverse load (nondimensional)
0, = shear force resultant
N,.{S*,} = radial force resultant (nondimensional)
Ny = tangential force resultant
Ny = residual tensile force resultant
k* = tension parameter
N, = incremental radial force resultant
M, = radial moment resultant
My = tangential moment resultant
M = residual moment resultant
E{I1} = modulus of elasticity (nondimensional)
v = poisson’s ratio
[A] = extensional stiffness matrix
[B] = flexural-extensional matrix due to coupling
[D] = flexural stiffness matrix
Bl, = B11A12/A11—B12
D* = Dy, *B%I/An
A= [[BTZh/ D]
(AT, — A%)n?/A1D"]
¢ = aspect ratio, i—;
.« = nondimensional distance from the reference axis to the
_ neutral axis, 541
¢ = transformed nondimensional radial coordinate
f = stretching parameter
[F] = finite difference coefficient matrix of @
[K] = finite difference coefficient matrix of S
[R] = finite difference coefficient matrix of U
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